The Career Builder + Job Assistance

Complete Data Science and Analytics with Gen AI.
For those who want a serious career in Tech.

Python

ModuleTopicKey Concepts Covered
1Environment SetupAnaconda Distribution, Jupyter Notebooks, Google Colab
2Python FundamentalsVariables, Dynamic Typing, Comments, Scalar Data Types
3Operators & LogicArithmetic, Comparison, Logical Operators, Data Filtering
4Control FlowConditional Statements (if, elif, else)
5Iteration & Loopsfor Loop, while Loop, break, continue
6Strings & FormattingString Manipulation, f-strings, Text Data Cleaning
7Data Structures – Part 1Lists (Indexing, Slicing, Mutability), Tuples (Immutability)
8Data Structures – Part 2Dictionaries (Key-Value Pairs, JSON Logic), Sets (Deduplication)
9Functions & ModularityFunctions, Parameters, Return Values, Scope
10Functional ProgrammingLambda Functions, map(), filter(), zip()
11Advanced PythonList & Dictionary Comprehensions, Efficient Data Cleaning
12Error HandlingException Handling (try/except), Debugging
13File OperationsRead/Write Files (Text, CSV), Context Managers (with)
14Modules & PackagesImporting Libraries, Python Ecosystem, pip
15OOP for Data ScienceClasses, Objects, Attributes
16OOP ImplementationMethods, Constructors (__init__), self
17Applied OOPObject-Oriented Design in Pandas & Scikit-learn

Power BI

ModuleTopicKey Concepts Covered
1Introduction & Data Analyst FoundationRole of Data Analyst, Data Lifecycle, Business Understanding
2Data Preparation & Power Query MasteryData cleaning, transformation, ETL, Power Query Editor
3Data Modeling & DAX EssentialsRelationships, Measures, Calculated Columns, DAX Functions
4Data Visualization & Advanced AnalyticsInteractive dashboards, KPIs, Advanced charts, Insights
5Management, Security & Microsoft FabricWorkspace management, Data security, Governance, Microsoft Fabric overview

Statistics

ModuleTopicKey Concepts Covered
1Descriptive StatisticsMean, Median, Mode, Standard Deviation, Variance
2Data VisualizationHistograms, Scatter Plots, Box Plots, Outlier Detection
3Statistical DistributionsNormal Distribution (Bell Curve), Skewness, Z-Scores
4Correlation AnalysisCovariance, Pearson Correlation, Feature Selection
5Probability for AIConditional Probability, Bayes’ Theorem, Naive Bayes Foundation
6Hypothesis TestingNull Hypothesis, P-Values, Statistical Significance

Pandas

ModuleTopicKey Concepts Covered
1Pandas Series & DataFrame StructureSeries, DataFrames, Data Types, Shape
2Reading & Writing DataRead/Write CSV, Excel, JSON, Text Files
3Data Inspection & Explorationhead(), tail(), info(), describe()
4Indexing, Slicing & Filteringloc, iloc, Boolean Indexing
5Handling Missing Values & Duplicatesisnull(), fillna(), dropna(), duplicated()
6Grouping & Aggregationgroupby(), Aggregation Functions (sum, mean, count)
7Merging, Joining & Concatenationmerge(), join(), concat()

Numpy

ModuleTopicKey Concepts Covered
1NumPy Array BasicsArray creation, Data types, Shape, Reshaping
2NumPy Data SelectionIndexing, Slicing, Boolean Indexing
3NumPy OperationsVectorized operations, Fast mathematical computations without loops

Machine Learning

ModuleTopicKey Concepts Covered
1Introduction to Machine LearningML overview, real-world applications
2Types of LearningSupervised, Unsupervised, Reinforcement Learning
3Model Training BasicsTrain & Test Split, Validation Split
4Model Evaluation FundamentalsPerformance metrics, Overfitting & Underfitting
5Linear RegressionModel concept, use cases
6Linear Regression AssumptionsLinearity, Independence, Homoscedasticity, Normality
7Regression Evaluation MetricsR-square, Adjusted R-square
8Scikit-learn IntroductionML workflow, APIs, pipelines
9Logistic RegressionTraining methodology, classification logic
10Classification MetricsPrecision, Recall, ROC Curve, F-score
11Decision TreeTree structure, splitting criteria
12Model Validation ConceptsCross-validation, Bias vs Variance
13Ensemble LearningEnsemble approach overview
14Bagging & BoostingBagging, Boosting techniques
15Random ForestAlgorithm working, advantages
16Feature ImportanceVariable importance analysis
17XGBoostGradient boosting, high-performance ML
18K-Nearest Neighbor (KNN)Distance-based learning
19Lazy LearnersConcept of lazy learning
20Curse of DimensionalityHigh-dimensional data challenges
21KNN LimitationsPerformance issues, scalability
22Text AnalyticsNLP fundamentals
23Text PreprocessingTokenization, Chunking
24Feature Extraction (Text)Document Term Matrix (DTM)
25Sentiment AnalysisHands-on sentiment analysis
26Hierarchical ClusteringAgglomerative & divisive methods
27K-Means ClusteringAlgorithm steps, use cases
28Clustering EvaluationPerformance measurement
29Principal Component Analysis (PCA)Feature compression
30Dimensionality ReductionHigh-dimensional data reduction
31Factor AnalysisLatent variable modeling
32Time Series ForecastingTime-based data analysis
33Moving AverageSmoothing techniques
34ARIMA ModelAutoregressive Integrated Moving Average

Deep Learning

ModuleTopicKey Concepts Covered
1Basics of Neural NetworksNeurons, layers, activation functions
2Types of Neural NetworksANN, CNN, RNN
3Cost FunctionLoss functions, optimization objective
4Gradient DescentOptimization techniques, learning rate
5Linear Algebra BasicsVectors, matrices, dot products
6Neural Network from ScratchVanilla NN implementation in Python
7TensorFlow BasicsTensors, computational graphs, workflow
8Simple Neural Network (Hands-on)Building NN using TensorFlow
9Word EmbeddingsWord representation techniques
10Word2Vec ModelsCBOW, Skip-gram
11Word RelationshipsSemantic similarity, vector arithmetic
12Convolutional Neural Networks (CNN)Convolution layers, filters
13Pooling & PaddingMax Pooling, window padding
14CNN for Image ClassificationEnd-to-end image classification
15Recurrent Neural Networks (RNN)Sequential data modeling
16LSTM ArchitectureLong Short-Term Memory units
17Character-level RNNStory writer implementation
18Sentiment Analysis (Hands-on)Text classification using DL
19Sequence-to-Sequence ModelsSeq2Seq architecture
20Encoder–Decoder FrameworkAttention-ready encoder-decoder models
21Generative Adversarial Networks (GAN)Generator vs Discriminator
22Generative Models using GANImage/text generation
23Semi-Supervised Learning with GANLearning with limited labels

Data Visualization

ModuleModule TitleTopics Covered
Module 1Foundations & Text MasteryThe Art of Prompt EngineeringAI for Content Writing & Copywriting
Module 2Visuals & Multimedia CreationText-to-Image Generation & DesignAI-Powered Video Creation & EditingVoice Synthesis & Audio AIBuilding AI Avatars & Virtual Presenters
Module 3Data, Code & ProductivityAI for Data Analysis & VisualizationCoding & Debugging AssistanceProductivity & Workflow Automation
Module 4Professional Growth & Future TrendsAI in Digital Marketing & Social MediaResume Building & Interview Prep with AIFuture Trends & Ethics in AI

Data Visualization

ModuleTopicKey Concepts & Skills
Module 1: Foundations & Text MasteryGenAI IntroductionDefinition, core concepts, and key applications
 Model ArchitecturesTransformers and self-attention mechanisms
 Data ProcessingTokenization, embeddings, and vector representations
 LLM BehaviorCapabilities, hallucinations, and bias mitigation
Module 2: AI Workflows & AgentsLangChain CoreChains, prompt templates, and output parsers
 LangGraph LogicGraph-based orchestration and complex workflows
 AI MemoryContext window management and conversation history
 Agent FoundationsAgent definition, logic loops, and tool usage
 Agent TypesReactive vs. proactive planning agents
Module 3: Retrieval & Knowledge SystemsVector DatabasesStorage and indexing of high-dimensional embeddings
 Similarity SearchSemantic search and context retrieval algorithms
 RAG FrameworkRetrieval-Augmented Generation architecture
 RAG ImplementationDocument Q&A and knowledge assistants
Module 4: Advanced Systems & DeploymentMulti-Agent SystemsRole delegation and collaborative task execution
 App DevelopmentFull-stack GenAI apps using Streamlit and Python
 Model IntegrationOpenAI, Gemini, and open-source model APIs

Python

ModuleTopicKey Concepts Covered
1Environment SetupAnaconda Distribution, Jupyter Notebooks, Google Colab
2Python FundamentalsVariables, Dynamic Typing, Comments, Scalar Data Types
3Operators & LogicArithmetic, Comparison, Logical Operators, Data Filtering
4Control FlowConditional Statements (if, elif, else)
5Iteration & Loopsfor Loop, while Loop, break, continue
6Strings & FormattingString Manipulation, f-strings, Text Data Cleaning
7Data Structures – Part 1Lists (Indexing, Slicing, Mutability), Tuples (Immutability)
8Data Structures – Part 2Dictionaries (Key-Value Pairs, JSON Logic), Sets (Deduplication)
9Functions & ModularityFunctions, Parameters, Return Values, Scope
10Functional ProgrammingLambda Functions, map(), filter(), zip()
11Advanced PythonList & Dictionary Comprehensions, Efficient Data Cleaning
12Error HandlingException Handling (try/except), Debugging
13File OperationsRead/Write Files (Text, CSV), Context Managers (with)
14Modules & PackagesImporting Libraries, Python Ecosystem, pip
15OOP for Data ScienceClasses, Objects, Attributes
16OOP ImplementationMethods, Constructors (__init__), self
17Applied OOPObject-Oriented Design in Pandas & Scikit-learn

Statistics

ModuleTopicKey Concepts Covered
1Descriptive StatisticsMean, Median, Mode, Standard Deviation, Variance
2Data VisualizationHistograms, Scatter Plots, Box Plots, Outlier Detection
3Statistical DistributionsNormal Distribution (Bell Curve), Skewness, Z-Scores
4Correlation AnalysisCovariance, Pearson Correlation, Feature Selection
5Probability for AIConditional Probability, Bayes’ Theorem, Naive Bayes Foundation
6Hypothesis TestingNull Hypothesis, P-Values, Statistical Significance

Numpy

ModuleTopicKey Concepts Covered
1NumPy Array BasicsArray creation, Data types, Shape, Reshaping
2NumPy Data SelectionIndexing, Slicing, Boolean Indexing
3NumPy OperationsVectorized operations, Fast mathematical computations without loops

Pandas

ModuleTopicKey Concepts Covered
1Pandas Series & DataFrame StructureSeries, DataFrames, Data Types, Shape
2Reading & Writing DataRead/Write CSV, Excel, JSON, Text Files
3Data Inspection & Explorationhead(), tail(), info(), describe()
4Indexing, Slicing & Filteringloc, iloc, Boolean Indexing
5Handling Missing Values & Duplicatesisnull(), fillna(), dropna(), duplicated()
6Grouping & Aggregationgroupby(), Aggregation Functions (sum, mean, count)
7Merging, Joining & Concatenationmerge(), join(), concat()

Data Visualization

ModuleModule TitleTopics Covered
Module 1Foundations & Text MasteryThe Art of Prompt EngineeringAI for Content Writing & Copywriting
Module 2Visuals & Multimedia CreationText-to-Image Generation & DesignAI-Powered Video Creation & EditingVoice Synthesis & Audio AIBuilding AI Avatars & Virtual Presenters
Module 3Data, Code & ProductivityAI for Data Analysis & VisualizationCoding & Debugging AssistanceProductivity & Workflow Automation
Module 4Professional Growth & Future TrendsAI in Digital Marketing & Social MediaResume Building & Interview Prep with AIFuture Trends & Ethics in AI

SQL

CategoryTopicKey Concepts Covered
Core QueriesSELECT & Data FilteringSELECT statements, WHERE clause, and data sorting
AggregationsGrouping & SummariesGROUP BY, SUM, AVG, and other aggregate functions
JoinsTable RelationshipsInner Join, Left Join, and Right Join
Advanced LogicComplex QueriesSubqueries, CTEs, and Window Functions

 

Power BI

ModuleTopicKey Concepts Covered
1Introduction & Data Analyst FoundationRole of Data Analyst, Data Lifecycle, Business Understanding
2Data Preparation & Power Query MasteryData cleaning, transformation, ETL, Power Query Editor
3Data Modeling & DAX EssentialsRelationships, Measures, Calculated Columns, DAX Functions
4Data Visualization & Advanced AnalyticsInteractive dashboards, KPIs, Advanced charts, Insights
5Management, Security & Microsoft FabricWorkspace management, Data security, Governance, Microsoft Fabric overview

Machine Learning

ModuleTopicKey Concepts Covered
1Introduction to Machine LearningML overview, real-world applications
2Types of LearningSupervised, Unsupervised, Reinforcement Learning
3Model Training BasicsTrain & Test Split, Validation Split
4Model Evaluation FundamentalsPerformance metrics, Overfitting & Underfitting
5Linear RegressionModel concept, use cases
6Linear Regression AssumptionsLinearity, Independence, Homoscedasticity, Normality
7Regression Evaluation MetricsR-square, Adjusted R-square
8Scikit-learn IntroductionML workflow, APIs, pipelines
9Logistic RegressionTraining methodology, classification logic
10Classification MetricsPrecision, Recall, ROC Curve, F-score
11Decision TreeTree structure, splitting criteria
12Model Validation ConceptsCross-validation, Bias vs Variance
13Ensemble LearningEnsemble approach overview
14Bagging & BoostingBagging, Boosting techniques
15Random ForestAlgorithm working, advantages
16Feature ImportanceVariable importance analysis
17XGBoostGradient boosting, high-performance ML
18K-Nearest Neighbor (KNN)Distance-based learning
19Lazy LearnersConcept of lazy learning
20Curse of DimensionalityHigh-dimensional data challenges
21KNN LimitationsPerformance issues, scalability
22Text AnalyticsNLP fundamentals
23Text PreprocessingTokenization, Chunking
24Feature Extraction (Text)Document Term Matrix (DTM)
25Sentiment AnalysisHands-on sentiment analysis
26Hierarchical ClusteringAgglomerative & divisive methods
27K-Means ClusteringAlgorithm steps, use cases
28Clustering EvaluationPerformance measurement
29Principal Component Analysis (PCA)Feature compression
30Dimensionality ReductionHigh-dimensional data reduction
31Factor AnalysisLatent variable modeling
32Time Series ForecastingTime-based data analysis
33Moving AverageSmoothing techniques
34ARIMA ModelAutoregressive Integrated Moving Average

Deep Learning

ModuleTopicKey Concepts Covered
1Basics of Neural NetworksNeurons, layers, activation functions
2Types of Neural NetworksANN, CNN, RNN
3Cost FunctionLoss functions, optimization objective
4Gradient DescentOptimization techniques, learning rate
5Linear Algebra BasicsVectors, matrices, dot products
6Neural Network from ScratchVanilla NN implementation in Python
7TensorFlow BasicsTensors, computational graphs, workflow
8Simple Neural Network (Hands-on)Building NN using TensorFlow
9Word EmbeddingsWord representation techniques
10Word2Vec ModelsCBOW, Skip-gram
11Word RelationshipsSemantic similarity, vector arithmetic
12Convolutional Neural Networks (CNN)Convolution layers, filters
13Pooling & PaddingMax Pooling, window padding
14CNN for Image ClassificationEnd-to-end image classification
15Recurrent Neural Networks (RNN)Sequential data modeling
16LSTM ArchitectureLong Short-Term Memory units
17Character-level RNNStory writer implementation
18Sentiment Analysis (Hands-on)Text classification using DL
19Sequence-to-Sequence ModelsSeq2Seq architecture
20Encoder–Decoder FrameworkAttention-ready encoder-decoder models
21Generative Adversarial Networks (GAN)Generator vs Discriminator
22Generative Models using GANImage/text generation
23Semi-Supervised Learning with GANLearning with limited labels

Generative AI

ModuleTopicKey Concepts & Skills
Module 1: Foundations & Text MasteryGenAI IntroductionDefinition, core concepts, and key applications
 Model ArchitecturesTransformers and self-attention mechanisms
 Data ProcessingTokenization, embeddings, and vector representations
 LLM BehaviorCapabilities, hallucinations, and bias mitigation
Module 2: AI Workflows & AgentsLangChain CoreChains, prompt templates, and output parsers
 LangGraph LogicGraph-based orchestration and complex workflows
 AI MemoryContext window management and conversation history
 Agent FoundationsAgent definition, logic loops, and tool usage
 Agent TypesReactive vs. proactive planning agents
Module 3: Retrieval & Knowledge SystemsVector DatabasesStorage and indexing of high-dimensional embeddings
 Similarity SearchSemantic search and context retrieval algorithms
 RAG FrameworkRetrieval-Augmented Generation architecture
 RAG ImplementationDocument Q&A and knowledge assistants
Module 4: Advanced Systems & DeploymentMulti-Agent SystemsRole delegation and collaborative task execution
 App DevelopmentFull-stack GenAI apps using Streamlit and Python
 Model IntegrationOpenAI, Gemini, and open-source model APIs
Scroll to Top